Spectra of Non-Equilateral Graphs
MeGraPDE.QuantumGraphSpectra.equilateral_floor_approximation
— Functionequilateral_floor_approximation(Γ::MetricGraph, h::Number)
Compute equilateral floor approximation of 'Γ' with equilateral edge length 'h'
MeGraPDE.QuantumGraphSpectra.equilateral_ceil_approximation
— Functionequilateral_ceil_approximation(Γ::MetricGraph, h::Number)
Compute equilateral ceil approximation of 'Γ' with equilateral edge length 'h'
MeGraPDE.QuantumGraphSpectra.eigvals_equilateral_representation
— Functioneigvals_equilateral_representation(Γ::MetricGraph, h::Number)
Compute the exact eigenvalues of 'Γ' by an equilateral representation with edge length 'h'
MeGraPDE.QuantumGraphSpectra.approx_lowest_level
— Functionapprox_lowest_level(Γ::MetricGraph, h_min::Number; Q=2)
Compute eigenvalue approximations by equilateral ceil and floor approximations of the first 'Q' eigenvalues at the lowest discretization level 'h_min' in the nested iteration.
MeGraPDE.QuantumGraphSpectra.nested_iteration_eigenvalue_approximation
— Functionnested_iteration_eigenvalue_approximation(Γ::MetricGraph; lev_zero=0, lev_max=7, Q=2, save_each_lev=false)
Approximate first 'Q' eigenvalues of 'Γ' via equilateral approximations using a nested itertation approach.
MeGraPDE.QuantumGraphSpectra.H_matrix
— FunctionH_matrix(z::Number, Γ::MetricGraph)
Compute H(z) for a metric graph 'Γ'.
H_matrix(z::Number, bfN::SparseMatrixCSC, ℓ_vec::Vector)
Compute H(z) for a graph with incidence matrix 'Inc' and edge length 'ℓ_vec'.
MeGraPDE.QuantumGraphSpectra.newton_trace
— Functionnewton_trace(Γ::MetricGraph, z_start::Number)
Newton-trace iteration to determine roots of det(H(z)).
MeGraPDE.QuantumGraphSpectra.nested_iteration_newton_trace
— Functionnested_iteration_newton_trace(Γ::MetricGraph; lev_zero=0, lev_max=7, Q=5, save_each_lev=false, return_eigvecs=false)
Conduct nested iteration newton trace algorithm to find the first 'Q' eigenvalues of 'Γ'.