... and its spectrum
All eigenvalues $\lambda < \frac{K \pi}{\ell}^2$ of the equilateral graph $\Gamma$ can be computed with eigvals_quantum
. By default, K=3 is applied.
eigvals_quantum(Γ)
First 12 eigenvalues: 12-element Vector{Any}: 0 0.1111111111111111 0.1111111111111111 0.11111111111111133 0.4444444444444444 0.9999999999999993 1.0 1.0 1.7777777777777777 2.777777777777778 2.777777777777778 2.7777777777777795
An eigenfunction basis with all eigenfunctions $\phi_{\lambda}$, $\lambda < \frac{K \pi}{\ell}^2$ can be constructed via eigen_quantum
σ = eigen_quantum(Γ)
First 12 eigenvalues and eigenfunctions: values: 12-element Vector{Float64}: 0.0 0.1111111111111111 0.1111111111111111 0.11111111111111133 0.4444444444444444 0.9999999999999993 1.0 1.0 1.7777777777777777 2.777777777777778 2.777777777777778 2.7777777777777795 Coefficients of eigenfunctions ϕ_e = A_e cos(√λ x) + B_e sin (√λ x) for q = 1, …, Q: A_e: 4×12 SparseMatrixCSC{Float64, Int64} with 24 stored entries: 0.230329 ⋅ ⋅ 2.16983e-16 … -0.325735 ⋅ ⋅ 2.16983e-16 0.230329 ⋅ ⋅ 2.16983e-16 -0.325735 ⋅ ⋅ 2.16983e-16 0.230329 ⋅ ⋅ 2.16983e-16 -0.325735 ⋅ ⋅ 2.16983e-16 0.230329 ⋅ ⋅ 2.16983e-16 -0.325735 ⋅ ⋅ 2.16983e-16 B_e: 4×12 SparseMatrixCSC{Float64, Int64} with 37 stored entries: ⋅ -0.265962 -0.460659 … -0.265962 -0.460659 -0.188063 ⋅ 0.531923 -5.32401e-17 0.531923 -5.32401e-17 -0.188063 ⋅ -0.265962 0.460659 -0.265962 0.460659 -0.188063 ⋅ ⋅ ⋅ ⋅ ⋅ 0.56419
Eigenvalues and eigenfunctions are always returned in ascending order. The function allows to explicitly construct a specific eigenfunction:
ϕ_q = eigenfunction(Γ, σ, 5)
4-element Vector{Function}: #6 (generic function with 1 method) #6 (generic function with 1 method) #6 (generic function with 1 method) #6 (generic function with 1 method)
It can be vizualized using plot_function_3d
plot_function_3d(Γ, ϕ_q)